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Quantitative structure-property relationships (QSPRs)
have been developed to predict the ion mobility spec-
trometry (IMS) collision cross sections of singly proto-
nated lysine-terminated peptides using information de-
rived from topological molecular structure and various
amino acid parameters. The primary amino acid sequence
alone is sufficient to accurately predict the collision cross
section. The models were built using multiple linear
regression (MLR) and computational neural networks
(CNNs). The best MLR model found contains six descrip-
tors and predicts 94 of 113 peptides (83%) to within 2%
of their experimentally determined values. The best CNN
model using the same six descriptors predicts 105 of the
113 peptides (93%) to within 2% of their experimentally
determined values. The best overall CNN model, using a
different set of six descriptors, predicts 109 of the 113
peptides (96%) to within 2% of their experimentally
determined values. In addition, this model can discrimi-
nate among peptides having identical amino acid compo-
sition, but differing in primary amino acid sequence. This
represents a capability not found in previously described
models. The descriptors used in the models presented
may provide some insight into the nature of peptide ion
folding in the gas phase.

INTRODUCTION AND THEORY
Ion mobility spectrometry (IMS)1 is an analytical technique

that is used extensively for the detection of trace amounts of
analytes in the gas phase. Portable IMS instruments that can
continuously monitor the surrounding air are commonly used to
detect explosives at airports, chemical warfare agents on the
battlefield, and toxins in the atmosphere. With the advent of
gentler new ionization techniques, such as matrix-assisted laser
desorption and ionization (MALDI)2-4 and electrospray ionization
(ESI),5 IMS is no longer limited to the analysis of small or

inherently gaseous molecules. Recent improvements in instrument
sensitivity have made the analysis of complex mixtures com-
monplace.6,7 One such example8 discussed in this paper couples
IMS with time-of-flight mass spectrometry (TOFMS) to separate
large peptide libraries and protein digests and simultaneously
identify the individual constituents. This method has been used
to successfully identify synthetic failures in combinatorial librar-
ies9,10 and to examine polyalanine peptide conformations.11

In ion mobility spectrometry, ions are pulsed into one end of
a drift tube of length, L, that is filled with an inert buffer gas and
across which has been applied an electric field, E. An ion will
move at an apparent constant velocity through the tube and arrive
at the detector at the opposite end of the tube in drift time tD.
Ions separate in the drift tube according to size, shape, and charge
state. The ratio of the drift velocity, vD, to the applied electric field
is known as the ion mobility, K, shown in eq 1.

It is more common to report a standardized form of the ion
mobility known as the reduced ion mobility, K0. In eq 2, P and T
are the pressure and temperature of the buffer gas.

Since this paper addresses the role that molecular structure plays
in ion mobility spectrometry, a link between the ion mobility, K,
and molecular structure is sought. Revercomb and Mason12 have
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derived the needed relationship. In eq 3, K is the ion mobility, kb

is the Boltzmann constant, z is the charge of the ion, e is the
electronic charge, mI and mB are the mases of the ion and the
buffer gas, N is the neutral number density, and Ω is the collision
cross section.

It is the collision cross section that represents the ion’s structural
features in eq 3 and in ion mobility spectrometry in general.
Substituting eqs 1 and 2 into eq 3 and solving for Ω will produce
a formula that allows the experimental determination of collision
cross sections. This is shown in eq 4.

All of the parameters, E, L, P, T, and tD, can be precisely measured,
resulting in excellent reproducibility of the measured collision
cross sections.6

This paper presents several quantitative structure-property
(QSPR) models that predict the collision cross sections of a set
of 113 singly protonated lysine-terminated peptides. Certain
features of the peptides’ molecular structure, represented by
descriptors that encode the topology of the peptide and various
properties of the constituent amino acids, were found to correlate
extremely well with the experimentally determined collision cross
sections. These descriptors give us clues regarding the nature of
peptide ion folding in the gas phase. Previous studies from this
group to model the ion mobility of small organic compounds13,14

have shown that the QSAR methodology presented here is
effective in determining parameters related to IMS. Shvartsburg
et al.15 also studied prediction of ion mobility and collision cross
section using methods such as projection approximation, exact
hard-spheres scattering, trajectory calculations, and scattering on
electron density isosurfaces with and without trajectory calcula-
tions. These give good quality results. However, they require
three-dimensional modeling of the analyte, a time-consuming and
error-prone process for peptide ions. An advantage of the models
presented here is that no explicit three-dimensional information
regarding the conformation of the peptides is needed. Recently,
predictions of collision cross sections have been attempted for
peptide ions using intrinsic size parameters for individual amino
acids.16,17 These also give good results but lack the ability to
distinguish between peptide sequence isomers. Some of the
topological descriptors used in the models presented here do not
have this limitation, and thus, the resulting models are able to
discriminate among sequence isomers.

EXPERIMENTAL METHOD
The 113 singly protonated, lysine-terminated peptides used in

this study were selected from a database of 660 peptides whose
ion mobility collision cross sections have been reported.8 The
peptides were selected using several criteria. Only singly proto-
nated peptides were chosen, because there was only a very loose
correlation between the collision cross sections of singly proto-
nated peptides and the collision cross sections of the same
peptides doubly protonated. There was no linear transformation
that could be applied that would convert a singly protonated
collision cross section into the corresponding doubly protonated
collision cross section. Lysine-terminated peptides were chosen
to maintain consistency. It was expected that the positive charge
would reside on the basic lysine residue, and to help ensure
positive charge localization, peptides containing other residues,
such as histidine and arginine, were removed from consideration.
Finally, multiple collision cross section measurements were
recorded for each selected peptide so that a measure of variability
for each peptide’s cross section was available. A list of these
peptides, along with their associated experimental cross sections,
is presented in Table 1. The collision cross sections of the 113
peptides range from 140.18 to 267.51 Å2. The median standard
deviation of the measurements is 0.96 Å2. All but one of the
peptides (TVGGK) have experimental errors that are less than
2% of their experimentally determined value. The peptides used
in this study were generated from a tryptic digest of some common
proteins, and their associated collision cross sections were
determined using an injected-ion geometry IMS-TOFMS instru-
ment and software that is described in detail elsewhere.6,18-20

For the development of linear models, the set of 113 peptides
was divided into a 100-member training set and a 13-member
prediction set. The training set is used to build candidate models,
and the prediction set is used to validate the models by ensuring
that they have good predictive ability. The compounds represent-
ing the highest and lowest values of the dependent variable and
each of the independent variables were included in the training
set. For the purposes of this study, a peptide was considered to
be an outlier if it had a predicted value that differed by more than
2% of its measured collision cross section. Linear models were
selected primarily on the basis of the number of outliers and
secondarily on root-mean-square errors (RMSE).

Nonlinear models were built using computational neural
networks (CNNs). A 10-member cross-validation set, used to
prevent overtraining of the network, was removed from the
training set. This set up a 90-member training set, a 10-member
cross-validation set, and a 13-member prediction set.

All computations were performed on a DEC model 500au
Personal Workstation running the OSF/1 UNIX operating system.
Software written in-house, including the Automated Data Analysis
and Pattern Recognition Toolkit (ADAPT)21,22 and code imple-
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Table 1. 113 Singly Protonated, Lysine-Terminated Peptides Used in This Study

experimental, (Å2)c prediction, (Å2)c

ID sequencea cross sectionb error type I type II type III

1 AAWGK 157.36 (1.02) 157.96 157.68 155.97
2 Ac-GDVEK 163.18 (1.29) 160.15 159.93 161.64
3 ADLAK 159.31 (1.06) 157.47 156.67 156.36
4 AFDEK 168.36 (0.44) 167.31 165.53 167.18
5 AIAEK 160.73 (1.84) 161.24 161.75 160.06
6 APNAK 147.31 (0.98) 151.63* 148.09 149.35
7 AWGGK 152.16 (2.53) 152.75 152.92 152.66
8 DIAAK 155.37 (2.98) 157.03 156.28 155.12
9 DLLFK 183.11 (3.14) 182.39 183.01 183.98

10 FFSDK 172.73 (2.52) 175.83 172.49 171.48
11 GGNMK 147.44 (1.24) 146.93 146.76 147.42
12 GITWK 169.34 (0.58) 172.15 172.23 170.24
13 GTFAKCV 153.97 (0.91) 156.92 155.37 156.26
14 IFVQK 181.96 (0.51) 182.17 182.28 184.41
15 IIAEK 172.54 (0.50) 171.64 173.08 174.24
16 LDALK 172.36 (1.48) 168.30* 169.29 169.34
17 NLNEK 167.97 (0.94) 170.38 170.98 169.27
18 NTYEK 175.90 (2.66) 172.77 171.26* 175.27
19 TAWEKP 170.03 (1.25) 173.56* 172.42 172.79
20 TGQIK 157.62 (0.28) 160.75 160.35 156.89
21 TLTGK 157.34 (2.11) 157.46 157.36 158.53
22 TPGSK 145.50 (1.17) 146.88 144.16 147.58
23 TVGGK 140.18 (3.52) 143.52* 143.92* 139.88
24 YYPLK 187.31 (0.38) 185.69 188.20 189.01
25 AAAAEK 160.38 (1.06) 163.76* 161.24 161.63
26 ANIDVK 176.78 (0.76) 180.20 179.15 179.90
27 ASEDLK 175.16 (0.58) 177.98 175.69 178.64
28 EAMAPKP 176.19 (0.88) 175.54 175.66 176.25
29 EMPFPK 193.26 (1.43) 192.65 192.02 195.28
30 IEEIFKP 197.00 (2.97) 205.23* 204.28* 203.58*
31 IVAPGK 173.33 (1.17) 171.28 171.44 173.01
32 LIFAGKP 186.10 (1.12) 187.28 188.88 188.42
33 LVEDLKCV 192.17 (1.05) 193.70 192.58 192.43
34 MQIFVK 203.90 (0.59) 203.84 204.12 203.58
35 NDIAAK 173.78 (0.84) 174.29 173.31 172.76
36 NLDNLKCV 192.40 (0.69) 189.91 192.03 190.15
37 NVPLYK 195.27 (0.90) 195.07 197.79 196.25
38 NYQEAKCV 191.16 (0.92) 189.41 191.13 190.04
39 TEAEMKCV 182.54 (2.25) 182.89 183.67 185.80
40 TPVSEK 175.98 (0.73) 177.50 176.99 180.10*
41 YLTTLK 197.94 (0.70) 200.21 201.06 197.35
42 Ac-SIPETQK 205.42 (1.31) 208.67 208.44 208.39
43 APVDAFKCV 189.05 (0.76) 195.47* 197.69* 192.58
44 ATDEQLKCV 205.89 (0.16) 201.18* 202.79 202.09
45 ATEEQLK 206.40 (1.81) 205.39 205.58 207.09
46 DGADFAK 185.83 (0.90) 183.70 185.42 182.92
47 DSAIMLK 203.77 (1.32) 203.47 203.77 199.77
48 ELTEFAK 209.40 (0.69) 211.97 210.62 209.34
49 EVTEFAKP 202.91 (0.29) 207.04* 206.83 206.47
50 FNDLGEKP 206.73 (1.10) 203.10 203.81 203.36
51 GDVAFVK 200.45 (1.77) 193.14* 195.23* 195.23*
52 GGVVGIK 175.87 (0.62) 176.64 175.58 175.40
53 IATAIEK 202.92 (0.37) 201.25 202.52 202.93
54 ILLSSAK 202.97 (0.75) 204.19 204.33 203.51
55 IVTDLAK 204.75 (1.40) 203.38 203.75 202.69
56 IVTDLTK 207.02 (0.28) 207.17 206.29 206.97
57 LVTDLTKCV 205.76 (0.98) 207.61 206.62 207.12
58 MIFAGIKCV 207.13 (0.39) 208.51 208.65 205.73
59 MLTAEEK 209.77 (0.59) 206.63 206.30 205.80
60 NPDPWAK 198.09 (0.38) 201.78 200.66 199.82
61 VAAALTK 190.32 (0.73) 190.61 194.09 192.78
62 VADALTK 194.69 (1.73) 192.99 195.96 195.83
63 VDPVNFK 208.72 (0.91) 205.73 206.48 206.90
64 VLAAVYK 206.91 (1.08) 206.51 206.11 205.33
65 VLPVPQK 206.94 (0.57) 206.29 207.57 206.03
66 VLSAADK 193.03 (1.28) 190.22 191.49 192.79
67 VLSPADK 196.51 (1.02) 193.24 196.11 195.38
68 VLTSAAK 194.37 (0.13) 191.63 192.76 192.78
69 VSEALTKP 198.59 (2.27) 198.22 198.35 200.75
70 VVTDLTKCV 202.35 (0.99) 202.68 202.72 204.15
71 WNMQNGK 206.26 (0.19) 208.76 207.68 205.71
72 AADALLLK 223.86 (2.78) 217.87* 223.93 222.89
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menting CNNs, simulated annealing, and genetic algorithms, was
used in the development of the QSAR models described here.
The development cycle for the QSAR models consisted of four
steps: (1) structure entry and optimization, (2) descriptor genera-
tion and objective feature selection, (3) linear model formation,
and (4) nonlinear model formation.

Structure Entry and Optimization. Molecular models for
each of the peptides were generated in HyperChem 3.0 (Hyper-
cube, Inc., Waterloo, ON) on a Pentium PC using the HyperChem
scripting language and building each peptide from its constituent
amino acids. The peptides were modeled as neutral molecules
and assigned a rough three-dimensional conformation using the
model-building routine in HyperChem. This provided the required
information about atom types and bond connectivity within the
peptide molecules. No effort was made to assign a plausible three-
dimensional conformation to the peptides, because the topological
descriptors and amino acid parameters used as independent
variables and as network inputs are not dependent upon the
positions of the atoms for their calculation. That is, all descriptors

used in this study are independent of peptide conformation.
Instead, it was hypothesized that these descriptors could implicitly
model the three-dimensional characteristics of the ensemble of
conformations that are ultimately responsible for the collision
cross section of any given peptide.

Descriptor Generation and Objective Feature Selection.
Two primary classes of descriptors were generated in this study:
(1) topological descriptors and (2) amino acid-based descriptors.
Topological descriptors are based on graph theory and encode
information about the types of atoms and bonds in a molecule
and the nature of their connections. Examples of topological
descriptors include counts of atom and bond types and indexes
that encode the size, shape, and types of branching in a molecule.23

Amino acid-based parameters encode features pertaining to and
properties of individual amino acids. These are widely varied;
examples from the literature include the NMR chemical shift of

(23) Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors; Wiley-
VCH: Weinheim, 2000.

Table 1. (Continued)

experimental, (Å2)c prediction, (Å2)c

ID sequencea cross sectionb error type I type II type III

73 ADFAEISK 218.06 (0.55) 217.46 216.31 216.80
74 ADFAEVSK 214.17 (0.67) 212.97 211.99 213.12
75 ADFTDVTK 214.56 (1.13) 215.32 215.34 215.65
76 ADFTEISK 219.61 (0.21) 221.25 220.44 220.13
77 ALQASALK 218.92 (0.62) 213.20* 218.41 216.34
78 DIVGAVLK 206.07 (0.54) 213.19* 210.88* 212.60*
79 DLGEENFK 223.98 (1.41) 222.59 220.14 222.43
80 DLGEQYFK 232.22 (0.30) 232.97 234.63 232.28
81 DSADGFLK 209.30 (1.09) 208.47 208.01 209.49
82 EYEATLEK 229.28 (0.93) 231.16 231.28 229.68
83 FGVNGSEKP 201.76 (0.59) 204.51 204.55 205.44
84 GASIVEDK 205.22 (1.78) 204.06 203.81 206.59
85 IDALNENK 225.09 (1.45) 221.89 225.51 228.40
86 IGDYAGIK 210.60 (0.63) 209.52 209.72 211.63
87 LIVTQTMK 243.91 (0.71) 233.99* 234.71* 241.07
88 TYETTLEK 239.55 (1.30) 232.16* 237.90 238.01
89 VLTPDLYK 230.73 (1.13) 233.54 234.40 234.78
90 YLGEEYVK 238.79 (1.26) 235.26 239.28 239.96
91 AAVTAFWGK 237.76 (0.53) 233.39 235.90 235.59
92 AAVTGFWGKP 233.00 (0.18) 228.18* 233.70 233.87
93 ANELLINVK 249.69 (0.86) 249.16 247.43 246.44
94 EAVLGLWGK 235.37 (1.14) 238.55 237.48 234.24
95 FMMFESQNKP 259.37 (4.27) 261.07 257.29 257.42
96 FQPLVDEPK 255.89 (0.74) 249.26* 251.14 253.85
97 MFLGFPTTK 250.02 (1.45) 249.06 249.36 251.41
98 MFLSFPTTKP 255.16 (0.70) 255.30 253.04 255.00
99 QSALAELVKP 234.39 (1.35) 238.60 237.49 234.46

100 QTALVELLK 245.01 (1.53) 252.21* 248.34 246.41
101 QTALVELVK 242.43 (0.50) 247.28 243.62 242.54
102 SAVTALWGK 231.09 (1.09) 231.16 231.71 232.28
103 SLVSGLWGK 236.29 (0.69) 234.01 235.76 236.17
104 TFQSFPTTK 245.22 (0.25) 247.02 249.27 248.36
105 AQSDFGVDTK 241.43 (1.36) 240.67 243.59 242.79
106 DGAGDVAFVK 229.25 (0.61) 229.03 228.92 230.18
107 LVNELTEFAK 267.51 (1.38) 271.79 263.23 263.40
108 LVNEVTEFAK 262.66 (0.85) 266.86 260.64 261.10
109 SEEEYPDLSK 257.78 (0.49) 260.64 258.09 256.48
110 TAAYVNAIEK 246.52 (2.11) 253.63* 252.48* 250.13
111 VLDSFSNGMKP 252.25 (1.41) 251.95 253.19 252.68
112 VLNSFSDGLK 255.16 (0.96) 254.03 253.47 253.24
113 VLQSFSDGLK 255.95 (1.41) 257.20 256.08 255.67

a An Ac- prefix indicates an acetylated N-terminus. A CV superscript indicates that the peptide was chosen to be a member of the cross-
validation set. A P superscript indicates that the peptide was chosen to be a member of the prediction set. b Values listed here are taken from Table
1 in Valentine et al.8 c An asterisked value indicates that the prediction differs by more than 2% of the experimentally determined value.
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the R carbon,24 electronic charge index,25 and frequency of
occurrence in well-defined secondary protein structure,26 amino
acid topology,27 and principal components derived from yet other
measured or calculated properties of the amino acids.28-31 In the
present study, descriptors based on amino acid parameters were
generated by simply summing the individual amino acid param-
eters for all of the amino acids in a given peptide. A total of 131
topological32-40 and 68 amino acid-based24-31 descriptors were
calculated for each peptide.

To eliminate descriptors that contained little or redundant
information in the set of 199 descriptors, objective feature selection
was performed. Objective feature selection is carried out using
only the descriptors; the dependent variable is not used. First,
descriptors whose values were identical for at least 90% of the
training set members were eliminated due to insufficient informa-
tion content. In addition, one of two descriptors whose pairwise
correlation coefficient exceeded 0.90 for the training set peptides
was also removed to eliminate redundant information. The final
reduced pool of descriptors contained 67 topological and amino
acid-based descriptors for each peptide.

Linear Feature Selection and Model Formation (Type I).
A simulated annealing feature selection algorithm was used to
select subsets of descriptors from the reduced pool. The descriptor
subsets were then evaluated using a multiple linear regression
fitness evaluator. The fitness evaluator selected the best models
primarily on the basis of the number of outliers and then by the
RMSE of the training set peptides. Fewer outliers and lower RMSE
values were favored. In this study, an outlier was defined as any
peptide whose predicted cross section differed from its experi-
mental cross section by more than 2%. This value was chosen
because the experimental errors for all but one of the 113 peptides
(TVGGK) used in the present study are 2% or less. It was
hypothesized that more-predictive models could be obtained by
defining a fitness evaluator whose primary objective was to predict
as many training set observations as possible to within a certain
tolerance and then selecting models with the lowest training set
RMSE in the case of equal numbers of outliers. This method was
successful. Each of the descriptors included in the MLR models
was required to have a t-value of 2.0 of greater, ensuring that the
descriptors in the model contribute significantly useful information

at the 95% confidence level. MLR models were generated with
varying numbers of descriptors. Preference was given to models
containing fewer descriptors that did not significantly increase the
outlier number or RMSE.

Using the criteria previously described, an optimal model was
sought from all type I models generated. Descriptors in candidate
models were tested for correlation among themselves. Models
were rejected if the multiple correlation coefficient for any of its
descriptors was greater than 0.90. To test the predictive power of
the models, the collision cross sections were calculated for the
peptides of the prediction set and were compared to their
corresponding experimentally determined cross sections.

Linear Feature Selection and Nonlinear Model Formation
(Type II). The descriptors that were selected for inclusion in the
best type I model were used as inputs to a three-layer, fully
connected, feed-forward computational neural network. The three
layers in the network consist of an input layer, a hidden layer,
and an output layer. The number of neurons in each layer specified
the network architecture. There are as many neurons in the input
layer as there are input descriptors. The number of neurons in
the hidden layer may vary. In general, networks with too few
hidden layer neurons tend to overgeneralize when making
predictions, and too many hidden neurons tend to make the
network memorize peculiarities of the training set. The output
layer consists of a single neuron representing the predicted value,
in this case, the collision cross section. The networks used in the
type II models were trained using a BFGS (Broyden-Fletcher-
Goldfarb-Shanno)41-44 quasi-Newton optimization method coupled
with an early stopping algorithm. This involved splitting the set
of 100 training set members into a 90-member training set and a
10-member cross-validation set. The cross-validation set prevents
the network from overtraining by allowing the training process
to be stopped when the network begins to memorize peculiarities
of the training set. Associated with the network is a set of weights
and biases collectively known as adjustable parameters. An
additional precautionary measure taken to prevent overtraining
was that the number of adjustable parameters in the network was
limited to half the number of peptides in the training set. The
models were then validated using the peptides of the prediction
set. Several network architectures were tested to determine the
optimal configuration of the CNN. The best models were defined
to be those with the fewest outliers, and in the case of equal
numbers of outliers, the smallest difference in the training set
and prediction set RMSE.

Nonlinear Feature Selection and Model Formation (Type
III). It is unreasonable to expect that the descriptors chosen using
a linear feature selection routine will be the optimal descriptors
to use as inputs to a nonlinear computational neural network.
Therefore, a genetic algorithm-driven, computational neural
network-based feature selection routine was used to select an
optimal set of descriptors as inputs to the CNN. The 67 descriptors
of the reduced pool described earlier were considered. The fitness
evaluator used here selects descriptors based only on the
magnitude of the training set RMSE. The adjustable parameters
in the CNN were then optimized in the same manner as described

(24) Fauchère, J.-L.; Charton, M.; Kier, L. B.; Verloop, A.; Pliska, V. Int. J. Peptide
Protein Res. 1988, 32, 269-278.
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for type II models. Once again, the training and cross-validation
sets were used to construct the models, and the prediction set
was used to validate the predictive ability of the models.

RESULTS AND DISCUSSION
Dependence of Collision Cross Section on Size and Mass.

To a first approximation, the collision cross section depends on
the overall size or mass of the peptide. It was found for the set of
113 peptides used in this study that the collision cross section
correlated extremely well with both the molecular weight of the
peptide ion8 (r2 ) 0.965, RMSE ) 5.78 Å2) and the number of
atoms in the peptide ion (r2 ) 0.987, RMSE ) 3.577 Å2). The
number of atoms used here includes all heavy and hydrogen
atoms except the extra proton responsible for the +1 charge of
the peptide ions. A simple linear model was constructed using
only the number of atoms and is presented in Figure 1. This trivial
linear model was able to predict 88 of 113 peptides (78%) to within
2% of their experimentally determined collision cross sections.
Shvartsburg et al.15 found that by summing the projection area
contributions from each atom and dividing by the total mass of
the peptide, they could fairly accurately predict the collision cross
sections for the same set of 113 peptides. This is mathematically
equivalent to using the number of atoms in the molecule when

all atomic radii and masses are equivalent. A similar dependence
upon size was found when predicting the ion mobilities of small
organic molecules.13,14 Thus, any descriptors included in a model
in addition to the measure of overall size represent the more subtle
conformational aspects of the gas-phase peptide ions (which
interact with themselves and with the surrounding buffer gas),
and in which most of our interest lies.

Type I Models. Models containing from 2 to 10 descriptors
were examined for overall quality. Only descriptor subsets whose
t-values were all above 2.0 were considered. The six-descriptor
subset that was selected for further model development is
presented in Table 2. A type I model was built using these six
descriptors, and it was found that no descriptor had a multiple
correlation coefficient of greater than 0.90, ensuring that the
redundant information being introduced into the model via
combinations of other descriptors was kept to an acceptable level.
This model is presented in Figure 2 and has a training set RMSE
of 3.11 Å2 (15 of 100 were outliers) and a prediction set RMSE of
3.55 Å2 (4 of 13 were outliers). The prediction that showed the
worst agreement with experiment was obtained for the IEEIFK
peptide which was overpredicted by 4.18%. Pairwise correlation
coefficients among the six descriptors ranged from 0.016 to 0.858

Figure 1. Plot of percent error in predicted collision cross section
versus the experimentally determined collision cross section for the
linear model containing only one descriptor, the number of atoms.
Closed circles represent peptides whose predicted cross section was
within 2% of their experimentally determined cross section. Open
circles represent peptides whose predicted cross section was greater
than 2% of their experimentally determined cross section.

Table 2. Descriptors Selected for the Type I MLR and Type II CNN Models

descriptor typea coefficient error range explanationb

na•*-0 T 1.249 2.803 × 10-2 68-168 no. atoms, including hydrogen
3SP3-1 T -2.309 0.4852 1-4 count of 3° sp3-hybridizded carbons
AA•S-17 AA 1.566 0.6697 0-2 Count of serine residues
EXTR-105 AA -14.03 3.179 0.316-1.10 Chou-Fasman f(i + 1)
EXTR-108 AA 1.504 × 10-2 4.541 × 10-3 292-1030 Collantes-Dunn ISA
EXTR-143 AA 0.4150 0.1754 -2.69-7.48 Sandberg et al. z5
constant 62.57 1.609

a T, topological; AA, amino acid parameter-based. b na•*-0, number of heavy and hydrogen atoms; 3SP3-1, count of sp3-hybridized carbon atoms
bonded to three other carbon atoms; EXTR-105, frequency of amino acid in the (i + 1)st position of a â-turn;26 EXTR-108, Collantes-Dunn isotropic
surface area (ISA);25 EXTR-143, fifth Sandberg et al. z-index.30

Figure 2. Plot of percent error in predicted collision cross section
versus the experimentally determined collision cross section for the
best type I model found. Circles represent training set members and
triangles represent prediction set members. Closed shapes represent
peptides whose predicted cross section was within 2% of their
experimentally determined cross section. Open shapes represent
peptides whose predicted cross section was greater than 2% of their
experimentally determined cross section.
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with a mean of 0.325. Table 1, column 5 gives the individual
calculated collision cross section values generated by the type I
model.

Two of the descriptors in the model are topological, and four
are amino acid-based. One of the topological descriptors is the
number of atoms, as described in the previous section. The other
topological descriptor, 3SP3-1, encodes the number of sp3-
hybridized carbon atoms that are connected to three other carbon
atoms. There are no carbons of this type in the peptide backbone,
and only three naturally occurring amino acid side chains possess
such a carbon atom: leucine, isoleucine, and valine, with one
apiece. This descriptor, then, is equivalent to the count of leucine,
isoleucine, and valine residues in the peptide. This is significant,
because Valentine et al.17 found that these three nonpolar aliphatic
amino acids possessed the highest intrinsic size parameters (ISP)
of any amino acid found in the set of 113 peptides (except for
lysine, which is always at the C-terminus of the peptide). These
Clemmer ISPs are amino acid parameters that represent a
particular amino acid’s contribution to the total collision cross
section. They were determined by solving a set of linear equations
relating the numbers and types of amino acids in a set of peptides
to their collision cross sections. Additionally, Shvartsburg et al.15

found that amino acid side chain density is a factor in determining
the collision cross section. They define an ISP for an amino acid
as the sum of the projection area contributions of all the atoms
divided by the masses of the atoms in the amino acid. This area-
per-mass measure can be seen as being inversely related to
density. Thus, amino acids whose side chains contain many light
atoms (nonpolar aliphatic residues in particular) will be the least
dense and have the highest Shvartsburg ISPs. Leucine, isoleucine,
and valine have the highest nonlysine Shvartsburg ISPs. Thus,
the inclusion of the 3SP3-1 descriptor in this type I model
incorporates information about side chain density.

In addition, four amino acid parameters were included in the
model. AA_S-17 is the count of serine residues, and it may have
been included in the model because of serine’s atypically small
but polar side chain. EXTR-105 is the Chou-Fasman f(i + 1)
index.26 It is the frequency of occurrence of an amino acid found
in the (i + 1)st position of a â turn, a common secondary structure
found in proteins and peptides. â turns are compact structures,
and proline, with its sterically hindered conformation that is
conducive to â turns, is most often found in this position. This
descriptor may thus be encoding the ability of the peptide to fold
into a compact conformation. The sign and magnitude of the
coefficient associated with this descriptor relative to its actual value
indicates that there will be a significant reduction in the collision
cross section if several of these turn-friendly amino acids are
included in the peptide. EXTR-108 is the Collantes-Dunn isotropic
surface area (ISA).25 ISA is defined as the surface area of an amino
acid available for nonspecific solvent interactions and is calculated
by first solvating the amino acid with water molecules at specific
hydrogen bonding sites and then calculating the surface area of
the amino acid that remains accessible to the solvent. This amino
acid parameter was developed for use in biologically oriented
quantitative structure-activity relationships (QSAR), in which an
aqueous environment is commonly encountered. However, in the
present study, it may be interpreted differently. The side chain
functional groups of many amino acids are electron-rich and

contain lone pair electrons and aromatic pi systems that will
solvate a positive charge as well as be solvated by water molecules.
Interactions between the positive charge and these functional
groups will tend to contract the peptide into a more compact
conformation, leaving the isotropic surface area exposed. The final
descriptor in the model, EXTR-143 is z5, one of a set of principal
components developed by Sandberg et al.30 The five Sandberg et
al. principal components z1 through z5 are derived from chromato-
graphic retention times, NMR chemical shifts, and other calculated
electronic properties of both natural and unnatural amino acids.
z4 and z5 were reported as being related to electronegativity, heat
of formation, electrophilicity, hardness, and other measures of
electronic character. This descriptor may be encoding the ability
of the peptide ion to solvate its positive charge.

Type II Models. The descriptors that were found to work well
in the best type I model were used as inputs to a type II CNN
model. All possible architectures from 6-2-1 (17 adjustable
parameters) to 6-5-1 (41 adjustable parameters) were examined
to find the model with the optimal training and prediction set error.
The best model found was a 6-5-1 CNN. A plot of the percent
error in the collision cross section versus the experimentally
determined collision cross section is presented in Figure 3. As
expected, there was a significant improvement in model quality
as a result of the added nonlinear characteristics of the neural
network. The training set error dropped from 3.11 to 2.39 Å2 (6
of 90 were outliers) and the prediction set error dropped from
3.55 to 3.02 Å2 (1 of 13 was an outlier). The cross-validation set
error was also 3.02 Å2 (1 of 10 was an outlier). The prediction
that showed the worst agreement with experiment was obtained
for the APVDAFK peptide, which was overpredicted by 4.57%.
Table 1, column 6 gives the individual calculated collision cross
section values generated by the type II model.

Figure 3. Plot of percent error in predicted collision cross section
versus the experimentally determined collision cross section for the
best type II model found. Circles represent training set members,
squares represent cross-validation set members, and triangles
represent prediction set members. Closed shapes represent peptides
whose predicted cross section was within 2% of their experimentally
determined cross section. Open shapes represent peptides whose
predicted cross section was greater than 2% of their experimentally
determined cross section.
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Type III Models. It was hypothesized that the best overall
model would come about as a result of the use of a nonlinear
feature selection routine coupled with a nonlinear neural network,
and this was indeed the case. The optimal descriptors found for
the best type III model are presented in Table 3. As before, a
6-5-1 network architecture was found to be optimal. A plot of the
percent error in the collision cross section versus the experimen-
tally determined collision cross section is presented in Figure 4.
The errors associated with all three sets were lower than those
in the best type II model. The training set error was 2.05 Å2 (3 of
90 were outliers), the cross-validation set error was 2.37 Å2 (0 of
10 were outliers), and the prediction set error was 2.82 Å2 (1 of
13 was an outlier). The prediction that showed the worst
agreement with experiment was obtained for the IEEIFK peptide,
which was overpredicted by 3.34%. Table 1, column 7 gives the
individual calculated collision cross section values generated by
the type III model.

The descriptors included in the best type III model include
four topological descriptors and two additional amino acid
parameter-based descriptors. The number of atoms appears, as
expected. In addition, the number of nitrogens, NN-4, appears.
This descriptor includes the nitrogens of the peptide backbone,
the lysine side chain nitrogen, and the nitrogen in the asparagine,
glutamine, and tryptophan side chains. MDE-12 is a molecular
distance-edge descriptor38 that encodes the through-bond dis-
tances between all sp3-hybridized carbon atoms connected to one
and two other carbon atoms. With the exception of threonine,
the only amino acids that possess this type of primary carbon are
the nonpolar aliphatic amino acids alanine, valine, isoleucine and
leucine. Hence, this descriptor could be contributing in much the
same way as 3SP3-1 does in the type I and II models. EMIN-1 is
the lowest electrotopological state index36 of any heavy (non-
hydrogen) atom in the peptide. Electrotopological state (e-state)
indexes are calculated for each heavy atom and encode the
number of valence electrons and the degree of branching at each
atom. Lower e-state indexes are assigned to atoms that have fewer
valence electrons and that are farther away from the periphery of
the molecule (that is, they are more highly branched). For the
set of 113 peptides used in this study, the atom that corresponds
to the lowest e-state is almost always the R carbon of the residue
possessing the most polar side chain. This makes sense for several
reasons. First, the carbon atom has the lowest number of valence
electrons of any heavy atom found in peptides. Second, the R
carbon is as highly branched as any atom found in a peptide and
is buried in the peptide backbone. Third, the e-state of an atom
can be reduced significantly by neighboring atoms that have many
valence electrons or are on the periphery of the molecule. Thus,
side chains of increasing polarity result in corresponding R
carbons with decreasing e-states. For peptides that contain no
polar side chains, the lowest e-state atom is either the terminal
lysine R carbon or the carbonyl carbon of the C-terminus. Thus,
the EMIN-1 descriptor is indirectly and inversely related to the
polarity of the most polar side chain in the peptide, and hence,
the ability of the peptide to solvate the positive charge. The two
remaining descriptors are the Sandberg et al. z4 and z5 principal
components30 that are both related to various calculated electronic
properties and most likely have a role similar to the z5 descriptor
in the best type II model.

Randomizing Experiments and Correlation with Experi-
mental Error. To show that the results obtained by the models
were not due to chance correlations, a randomizing experiment
was performed. The first part of the experiment involved randomly
scrambling the dependent variable, in this case the collision cross
section. The second part of the experiment was an attempt to
construct a type III model using the same methodology as was
used to build the actual type III model but using the scrambled
dependent variable data. The training set error in this experiment
was 18.90 Å2 (60 of 90 were outliers), the cross-validation set error
was 34.22 Å2 (9 of 10 were outliers), and the prediction set error
was 45.22 Å2 (11 of 13 were outliers). These results show that
the best models were extremely unlikely to have been found due
to chance correlation effects.

Since each of the 113 peptides included in this study was
measured multiple times, it was possible to calculate a standard
deviation of measurement for each one, and this value was defined
as the experimental error. The pairwise correlation coefficient
between the experimental error and the absolute value of the
prediction error was found to be 5.97 × 10-3 for the best type I
model, 5.73 × 10-3 for the best type II model, and 5.29 × 10-4 for
the best type III model. Hence, no significant correlation was found
between experimental and prediction errors in any of the models
presented.

Sequence Isomer Discrimination. The best type III model
has the ability to discriminate among sequence isomers, because
two of the input descriptors, MDE-12 and EMIN-1, are sequence-
dependent. To examine this capability more closely, two virtual
peptide libraries were created, one containing pentapeptides and
the other containing hexapeptides. The pentapeptide peptide
library contained all 24 permutations (4! ) 24) of the lysine-
terminated peptide GIWS(K) and the hexapeptide library con-
tained all possible 120 permutations (5! ) 120) of the lysine-
terminated peptide FAQDM(K). The amino acid composition of
the peptides was selected so as to include a variety of amino acid
types (nonpolar aliphatic, aromatic, polar aliphatic, etc.). The
peptides were then modeled in exactly the same fashion as those
used to construct the previously described models. The peptide
libraries were then submitted to the best type III model for
prediction. Table 4, column 3 gives the individual calculated
collision cross section values generated by the type III model for
the pentapeptide library in order of increasing collision cross
section. The pentapeptides predicted to have the highest and
lowest cross sections are ISGWK (167.83 Å2) and GIWSK (165.24
Å2) respectively, representing a difference of 2.59 Å2. In general,
the smallest cross sections occur when glycine (G) is in the first
(N-terminal) position and the largest cross sections occur when
serine (S) is in the first position. Table 5, column 3 gives the
individual calculated collision cross section values generated by
the type III model for the hexapeptide library in order of increasing
collision cross section. The hexapeptides predicted to have the
highest and lowest cross sections are DAMFQK (188.28 Å2) and
FAQDMK (180.34 Å2), respectively, representing a difference of
7.94 Å2. For the hexapeptide library, the smallest cross sections
occur when alanine (A) or phenylalanine (F) is in the first position
and the largest cross sections occur when aspartic acid (D) is in
the first position.
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An important trend may be observed in both libraries by
identifying the amino acid in each library that is best able to act
as a counterion and to stabilize the +1 charge located on the lysine
residue. In the pentapeptide library, this is serine (S), and in the
hexapeptide library, it is aspartic acid (D). In the pentapeptide
library, the smallest cross sections are predicted when the serine
residue is one to two amino acid positions away from the terminal
lysine residue. Increasingly larger cross sections are predicted
as more of the nonpolar or weakly polar amino acids are
interposed between the lysine and serine residues. A similar trend
holds for the hexapeptide library. In this case, the smallest cross
sections are predicted when the aspartic acid residue is two amino
acid positions away from the terminal lysine residue, and slightly
larger cross sections are predicted when the aspartic acid residue
is one or three positions away from the terminal lysine residue.
Again, more intervening nonpolar or weakly polar amino acids
increased the predicted cross section.

These results seem reasonable; however, no sequence isomers
were included in the training set used to build the model, and it
is thus unclear whether the variations in the predicted cross

sections are truly meaningful for sets of such compounds. Studies
are currently underway to determine the validity of these results.

General Considerations. It is interesting to note that many
of the same outliers were found in all three models. Seven of the
eight peptides predicted to be outliers in the type II model are
outliers in the type I model. Three of the four peptides predicted
as outliers in the best-performing type III model (which uses a
set of descriptors that is different from the type I and type II
models) are outliers in the type II and type I models as well. The
reason for this is not apparent upon casual examination of the
peptides. Since the outliers are by definition not predicted as well
as the other compounds, these can be identified as sequences
whose structures differ most notably from the majority of the other
sequences’ structures in the training set. The poorer predictions
for these peptides are probably due in part to some unique
structural feature particular to these peptides that is not being
encoded by the selected set of descriptors. There is no correlation
between the prediction and experimental errors for these outliers.

Finally, it must be emphasized that the models presented here
represent correlations between calculated (and in many cases,
quite artificial) descriptors and collision cross sections of a

Table 3. Descriptors Selected for the Type III CNN Model

descriptor typea range explanationb

na•*-0 T 68-168 no. atoms, including hydrogen
NN-4 T 6-12 no. nitrogen atoms
MDE-12 T 0.00-14.87 molecular distance-edge 1°-2° carbons
EMIN-1 T -1.98 to -1.18 minimum electrotopological state atom
EXTR-142 AA -1.29-3.83 Sandberg et al. z4
EXTR-143 AA -2.69-7.48 Sandberg et al. z5

a T, topological; AA, amino acid parameter-based. b na•*-0, number of heavy and hydrogen atoms; MDE-12, molecular distance-edge connectivity
between all primary and secondary carbons with C-C bonds;38 EMIN-1, minimum electrotopological state atom;36 EXTR-142, fourth Sandberg et
al. z-index;30 EXTR-143, fifth Sandberg et al. z-index.30

Figure 4. Plot of percent error in predicted collision cross section
versus the experimentally determined collision cross section for the
best type III model found. Circles represent training set members,
squares represent cross-validation set members, and triangles
represent prediction set members. Closed shapes represent peptides
whose predicted cross section was within 2% of their experimentally
determined cross section. Open shapes represent peptides whose
predicted cross section was greater than 2% of their experimentally
determined cross section.

Table 4. Predicted Collision Cross Sections for the
Virtual Pentapeptide Library Using the Best Type III
Model

ID sequence prediction type III (Å2)

1 GIWSK 165.24
2 GWSIK 165.33
3 GWISK 165.50
4 IGWSK 165.70
5 GISWK 165.77
6 WGISK 165.80
7 WGSIK 166.01
8 WIGSK 166.29
9 IGSWK 166.35

10 IWSGK 166.36
11 IWGSK 166.45
12 WISGK 166.46
13 WSGIK 166.82
14 GSWIK 166.85
15 WSIGK 166.86
16 GSIWK 167.27
17 SGWIK 167.36
18 SWGIK 167.44
19 ISWGK 167.46
20 SGIWK 167.50
21 SWIGK 167.61
22 SIGWK 167.74
23 SIWGK 167.81
24 ISGWK 167.83
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relatively small set of peptide ions. The true cause-and-effect
relationships at work may be well-described by the models or
hidden to some extent by any number of factors. Factors could
include data set representation, experimental error, pairwise
correlations among the descriptors originally calculated, inter-
correlation among descriptors that appear in the final model, and
insufficient information content in the calculated descriptors. An
inadequate representation of the set of compounds for which the

model will ultimately be used to make predictions (i.e., the training
set) will lead to models that are incorrect to some degree. Even
though the chemical class represented in this study (peptides) is
fairly restricted in the kinds of atoms that can be included and
how these atoms may be connected to one another, a training set
of 90 or 100 peptides may still be too small to adequately represent
the billions of possible peptides the models are intended for.
Experimental error becomes a factor when the predictive power

Table 5. Predicted Collision Cross Sections for the Virtual Hexapeptide Library Using the Best Type III Model

ID sequence prediction, type III (Å2) ID sequence prediction, type III (Å2)

1 FAQDMK 180.34 61 QAMFDK 182.26
2 AFQDMK 180.40 62 QAFMDK 182.28
3 AMQDFK 180.50 63 MFDAQK 182.30
4 FAMDQK 180.51 64 MQAFDK 182.35
5 AFMDQK 180.54 65 QFAMDK 182.42
6 AMFDQK 180.60 66 MFQADK 182.42
7 MAQDFK 180.61 67 QMAFDK 182.46
8 FQDMAK 180.63 68 FQMADK 182.58
9 FMQDAK 180.65 69 MADFQK 182.58

10 MAFDQK 180.72 70 FDQMAK 182.78
11 FMDQAK 180.76 71 MQFADK 182.84
12 MFQDAK 180.82 72 QFMADK 182.87
13 FMADQK 180.85 73 QDFMAK 182.93
14 FAMQDK 180.88 74 QMFADK 182.94
15 MFDQAK 180.90 75 FDQAMK 183.01
16 MQDFAK 180.92 76 QDMFAK 183.06
17 MFADQK 181.00 77 QDFAMK 183.16
18 AFMQDK 181.00 78 MDQFAK 183.30
19 AQDFMK 181.01 79 QDMAFK 183.34
20 FMAQDK 181.02 80 MDQAFK 183.57
21 AFDQMK 181.03 81 QDAFMK 183.78
22 FQDAMK 181.04 82 FDMQAK 183.82
23 AQDMFK 181.07 83 QDAMFK 183.83
24 AMFQDK 181.09 84 ADQFMK 184.11
25 AQFDMK 181.10 85 ADQMFK 184.15
26 MAFQDK 181.14 86 MDFQAK 184.21
27 AQMDFK 181.14 87 FDAQMK 184.55
28 MFAQDK 181.19 88 FDMAQK 184.58
29 FADQMK 181.25 89 MDFAQK 184.94
30 AMDQFK 181.30 90 ADFQMK 185.02
31 MQDAFK 181.40 91 FDAMQK 185.06
32 FQMDAK 181.41 92 MDAQFK 185.13
33 FQADMK 181.43 93 ADMQFK 185.22
34 QAFDMK 181.49 94 ADFMQK 185.50
35 QFDMAK 181.49 95 MDAFQK 185.57
36 QAMDFK 181.55 96 ADMFQK 185.65
37 MQFDAK 181.62 97 DQFMAK 186.72
38 FAQMDK 181.63 98 DQMFAK 186.79
39 QMDFAK 181.65 99 DQFAMK 186.81
40 MADQFK 181.66 100 DQMAFK 186.90
41 MQADFK 181.68 101 DQAFMK 187.03
42 AFQMDK 181.77 102 DQAMFK 187.05
43 AMQFDK 181.83 103 DFQMAK 187.22
44 QFMDAK 181.85 104 DFQAMK 187.29
45 QFADMK 181.88 105 DMQFAK 187.48
46 MAQFDK 181.89 106 DFMQAK 187.49
47 QMFDAK 181.89 107 DMQAFK 187.55
48 QFDAMK 181.95 108 DMFQAK 187.67
49 AFDMQK 181.96 109 DFAQMK 187.68
50 QMADFK 181.97 110 DFMAQK 187.73
51 AQMFDK 182.11 111 DFAMQK 187.85
52 FQAMDK 182.12 112 DMFAQK 187.89
53 AQFMDK 182.14 113 DAQFMK 187.90
54 QADFMK 182.14 114 DAFQMK 187.90
55 FMDAQK 182.16 115 DAQMFK 187.91
56 AMDFQK 182.17 116 DMAQFK 187.96
57 QMDAFK 182.19 117 DAMQFK 187.99
58 QADMFK 182.21 118 DMAFQK 188.10
59 FMQADK 182.23 119 DAFMQK 188.19
60 FADMQK 182.24 120 DAMFQK 188.28
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of the model approaches the resolution of the instrument used to
collect the data. This is the case for this study. Additionally, it
must be remembered that peptides, as most other polymers,
generally do not exist as a single conformation, but instead as an
ensemble of different conformations. The contributions of these
many conformations will cause the standard deviations of the
collision cross sections to increase, introducing more uncertainty
into the measurement. Pairwise correlation between the descrip-
tors originally calculated can be a factor, since one of the two is
arbitrarily discarded when the correlation between the two is
strong enough. This can mean that an important descriptor is
excluded from further consideration at an early stage of model
development. Intercorrelation among descriptors that appear in
the final model can confound model interpretation, since a linear
or nonlinear combination of these may represent the true cause
of the observation being modeled. Although a model using
multiple descriptors may give excellent results, it may hide a
simpler explanation. Insufficient information content in the cal-
culated descriptors may prevent the optimal model from being
produced because no combination of these descriptors is able to
adequately model the features that are ultimately responsible for
the effects being modeled.

CONCLUSIONS
Predictive QSPRs have been presented that link topological

molecular structure and derived amino acid parameters with the
ion mobility spectrometry collision cross sections of a set of 113
singly protonated, lysine-terminated peptides from a tryptic digest

of common proteins. No three-dimensional information about
peptide conformation is explicitly included in the models. The
models produced may give useful insights into the possible
mechanisms responsible for the folding of peptide ions in the gas
phase. A trivial linear model using only the number of atoms as
an independent variable was able to predict 88 of 113 peptide
collision cross sections (78%) to within 2% of their experimentally
determined value. The best MLR model obtained contained six
descriptors and was able to predict 94 of 113 peptide collision
cross sections (83%) to within 2% of the experimentally determined
value. Using the same six descriptors with a 6-5-1 CNN, the results
improved to 105 of 113 peptides (93%) predicted to within 2% of
experiment. Finally, an optimal set of six descriptors was chosen
for use in a CNN, and this 6-5-1 model predicted 109 of 113 peptide
collision cross sections (96%) to within 2% of experiment. This
model was shown to have the ability to discriminate among
sequence isomers, representing an additional capability not found
in previously described group contribution methods.
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